Mifare MFRC522 RFID Reader/Writer

ပထမဆုံးအနေနဲ့ RFID နဲ့ NFC Card အကြောင်းလေးနည်းနည်းရှင်းပြချင်ပါတယ်။ 13.56MHz မှာ သုံးတဲ့ RFID နဲ့ NFC က အတူတူပဲလို့ အကြမ်းဖျင်းမှတ်သားနိုင်ပါတယ်။ RFID ကတော့ သူ့မှာ သတ်မှတ်ထားတဲ့ ID ကိုပဲဖတ်နိုင်ပြီးတော့ NFC ကတော့ Memory (မှတ်ဉာဏ်) အပိုလေးပါတာကြောင့် ID နံပါတ်သာမက အခြား အချက်အလက်တွေကိုလဲ သိမ်းဆည်း အသုံးပြုနိုင်ပါတယ်။ ဥပမာ အမည်၊ မှတ်ပုံတင်အမှတ်၊ ပိုက်ဆံ ပေးချေမှု စသဖြင့် အများကြီး မှတ်သားပြီး အသုံးပြုလို့ရပါတယ်။ ဒါဆို NFC နဲ့ RFID ဘာကွာသလဲ။ NFC ဟာ RFID လို ID ပါပြီး Memory အပိုပါပါတယ်။ ဒါက 13.56MHz Application တွေ အတွက်ပါ။ အခြား Frequency မှာ သုံးတဲ့ RFID စနစ်တွေ ရှိသေးတာကြောင့် 13.56MHz ကို သတိချပ်စေချင်တယ်။

ဒီ Tutorial မှာ Mifare MRF522 ကို Arduino နဲ့ ချိတ်ဆက်ပြီး ဘယ်လိုအလုပ်လုပ်တယ်ဆိုတာလေးရှင်းပြသွားမှာပါ။

 

rfid-rc522-pin-layout

 

arduino-uno-r3-with-rfid-rc522

 

SPI Communication

ပုံမှာ ပြထားတဲ့ အတိုင်း Mifare MRF522 ကို ချိတ်ဆက် အလုပ်လုပ်နိုင်ဖို့ SPI Communication ကို သုံးထားပါတယ်။ SPI Data Communication ကို 4 wire Communication လို့လဲ အခါတရံ အလွယ်ခေါ်ပါသေးတယ်။

SPI Communication မှာ MOSI (Master Out Slave In), MISO (Slave In Master Out, SCK (CLOCK), SS (Chip Select) ဆိုပြီး wire လေးကြောင်းကို သုံးပြုထားလို့ပါ။

Arduino နဲ့ Mifare MRF522 ချိတ်ဆက်ပုံကတော့ အထက်မှာ ပြထားတဲ့ ပုံ အတိုင်းပဲဖြစ်ပါတယ်။

Source Code

MFRC522 library File ကို Arduino Library Folder ထဲ အရင် ထည့်ပါ။

MFRC522 Read/Write Example Code ကတော့ အောက်ပါအတိုင်းဖြစ်ပါသည်။

အောက်က Coding တွေကို ဒီနေရာ မှာ သွားရောက် ဒေါင်းလုပ်လုပ်နိုင်ပါသည်။

 

/**
* —————————————————————————-
* This is a MFRC522 library example; see https://github.com/miguelbalboa/rfid
* for further details and other examples.
*
* NOTE: The library file MFRC522.h has a lot of useful info. Please read it.
*
* Released into the public domain.
* —————————————————————————-
* This sample shows how to read and write data blocks on a MIFARE Classic PICC
* (= card/tag).
*
* BEWARE: Data will be written to the PICC, in sector #1 (blocks #4 to #7).
*
*
* Typical pin layout used:
* —————————————————————————————–
* MFRC522 Arduino Arduino Arduino Arduino Arduino
* Reader/PCD Uno Mega Nano v3 Leonardo/Micro Pro Micro
* Signal Pin Pin Pin Pin Pin Pin
* —————————————————————————————–
* RST/Reset RST 9 5 D9 RESET/ICSP-5 RST
* SPI SS SDA(SS) 10 53 D10 10 10
* SPI MOSI MOSI 11 / ICSP-4 51 D11 ICSP-4 16
* SPI MISO MISO 12 / ICSP-1 50 D12 ICSP-1 14
* SPI SCK SCK 13 / ICSP-3 52 D13 ICSP-3 15
*
*/

#include <SPI.h>
#include <MFRC522.h>

#define RST_PIN 9 // Configurable, see typical pin layout above
#define SS_PIN 10 // Configurable, see typical pin layout above

MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance.

MFRC522::MIFARE_Key key;

/**
* Initialize.
*/
void setup() {
Serial.begin(9600); // Initialize serial communications with the PC
while (!Serial); // Do nothing if no serial port is opened (added for Arduinos based on ATMEGA32U4)
SPI.begin(); // Init SPI bus
mfrc522.PCD_Init(); // Init MFRC522 card

// Prepare the key (used both as key A and as key B)
// using FFFFFFFFFFFFh which is the default at chip delivery from the factory
for (byte i = 0; i < 6; i++) {
key.keyByte[i] = 0xFF;
}

Serial.println(F(“Scan a MIFARE Classic PICC to demonstrate read and write.”));
Serial.print(F(“Using key (for A and B):”));
dump_byte_array(key.keyByte, MFRC522::MF_KEY_SIZE);
Serial.println();

Serial.println(F(“BEWARE: Data will be written to the PICC, in sector #1”));
}

/**
* Main loop.
*/
void loop() {
// Look for new cards
if ( ! mfrc522.PICC_IsNewCardPresent())
return;

// Select one of the cards
if ( ! mfrc522.PICC_ReadCardSerial())
return;

// Show some details of the PICC (that is: the tag/card)
Serial.print(F(“Card UID:”));
dump_byte_array(mfrc522.uid.uidByte, mfrc522.uid.size);
Serial.println();
Serial.print(F(“PICC type: “));
byte piccType = mfrc522.PICC_GetType(mfrc522.uid.sak);
Serial.println(mfrc522.PICC_GetTypeName(piccType));

// Check for compatibility
if ( piccType != MFRC522::PICC_TYPE_MIFARE_MINI
&& piccType != MFRC522::PICC_TYPE_MIFARE_1K
&& piccType != MFRC522::PICC_TYPE_MIFARE_4K) {
Serial.println(F(“This sample only works with MIFARE Classic cards.”));
return;
}

// In this sample we use the second sector,
// that is: sector #1, covering block #4 up to and including block #7
byte sector = 1;
byte blockAddr = 4;
byte dataBlock[] = {
0x01, 0x02, 0x03, 0x04, // 1, 2, 3, 4,
0x05, 0x06, 0x07, 0x08, // 5, 6, 7, 8,
0x08, 0x09, 0xff, 0x0b, // 9, 10, 255, 12,
0x0c, 0x0d, 0x0e, 0x0f // 13, 14, 15, 16
};
byte trailerBlock = 7;
byte status;
byte buffer[18];
byte size = sizeof(buffer);

// Authenticate using key A
Serial.println(F(“Authenticating using key A…”));
status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, trailerBlock, &key, &(mfrc522.uid));
if (status != MFRC522::STATUS_OK) {
Serial.print(F(“PCD_Authenticate() failed: “));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}

// Show the whole sector as it currently is
Serial.println(F(“Current data in sector:”));
mfrc522.PICC_DumpMifareClassicSectorToSerial(&(mfrc522.uid), &key, sector);
Serial.println();

// Read data from the block
Serial.print(F(“Reading data from block “)); Serial.print(blockAddr);
Serial.println(F(” …”));
status = mfrc522.MIFARE_Read(blockAddr, buffer, &size);
if (status != MFRC522::STATUS_OK) {
Serial.print(F(“MIFARE_Read() failed: “));
Serial.println(mfrc522.GetStatusCodeName(status));
}
Serial.print(F(“Data in block “)); Serial.print(blockAddr); Serial.println(F(“:”));
dump_byte_array(buffer, 16); Serial.println();
Serial.println();

// Authenticate using key B
Serial.println(F(“Authenticating again using key B…”));
status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_B, trailerBlock, &key, &(mfrc522.uid));
if (status != MFRC522::STATUS_OK) {
Serial.print(F(“PCD_Authenticate() failed: “));
Serial.println(mfrc522.GetStatusCodeName(status));
return;
}

// Write data to the block
Serial.print(F(“Writing data into block “)); Serial.print(blockAddr);
Serial.println(F(” …”));
dump_byte_array(dataBlock, 16); Serial.println();
status = mfrc522.MIFARE_Write(blockAddr, dataBlock, 16);
if (status != MFRC522::STATUS_OK) {
Serial.print(F(“MIFARE_Write() failed: “));
Serial.println(mfrc522.GetStatusCodeName(status));
}
Serial.println();

// Read data from the block (again, should now be what we have written)
Serial.print(F(“Reading data from block “)); Serial.print(blockAddr);
Serial.println(F(” …”));
status = mfrc522.MIFARE_Read(blockAddr, buffer, &size);
if (status != MFRC522::STATUS_OK) {
Serial.print(F(“MIFARE_Read() failed: “));
Serial.println(mfrc522.GetStatusCodeName(status));
}
Serial.print(F(“Data in block “)); Serial.print(blockAddr); Serial.println(F(“:”));
dump_byte_array(buffer, 16); Serial.println();

// Check that data in block is what we have written
// by counting the number of bytes that are equal
Serial.println(F(“Checking result…”));
byte count = 0;
for (byte i = 0; i < 16; i++) {
// Compare buffer (= what we’ve read) with dataBlock (= what we’ve written)
if (buffer[i] == dataBlock[i])
count++;
}
Serial.print(F(“Number of bytes that match = “)); Serial.println(count);
if (count == 16) {
Serial.println(F(“Success :-)”));
} else {
Serial.println(F(“Failure, no match :-(“));
Serial.println(F(” perhaps the write didn’t work properly…”));
}
Serial.println();

// Dump the sector data
Serial.println(F(“Current data in sector:”));
mfrc522.PICC_DumpMifareClassicSectorToSerial(&(mfrc522.uid), &key, sector);
Serial.println();

// Halt PICC
mfrc522.PICC_HaltA();
// Stop encryption on PCD
mfrc522.PCD_StopCrypto1();
}

/**
* Helper routine to dump a byte array as hex values to Serial.
*/
void dump_byte_array(byte *buffer, byte bufferSize) {
for (byte i = 0; i < bufferSize; i++) {
Serial.print(buffer[i] < 0x10 ? ” 0″ : ” “);
Serial.print(buffer[i], HEX);
}
}

 

error: Content is protected !!
 
%d bloggers like this: